Organs-on-chips that mimic the characteristics of human organs are enabling scientists to predict more accurately how effective therapeutic drug candidates would be in clinical studies without serious adverse effects and to address how multiple cells coordinate organizational decisions in response to complicated signaling cascades. We build valid artificial organ-on-a-chip systems by manipulating 3D extracellular environments in time and space, utilizing the expertise in microfabrication, miniaturization, robotics, and control systems engineering, and understanding the human body’s fundamental physiological responses to mechanochemical cues. This research will help examine the behavior and interaction of multifunctional nanomaterials with biologically relevant microenvironments for rapid clinical translation of nanomedicine, thereby bringing drugs to market more quickly and perhaps even eliminate the need for animal testing.

Engineering multiscale cells-on-chip systems for the improvement of our fundamental understanding of cellular/multicellular dynamics and the development of advanced therapeutics for or the treatment of Alzheimer's disease, atherosclerosis, diabetes, medulloblastoma, and neuroinflammation.